If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 3x2 + -10x + 37 = 0 Reorder the terms: 37 + -10x + 3x2 = 0 Solving 37 + -10x + 3x2 = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. 12.33333333 + -3.333333333x + x2 = 0 Move the constant term to the right: Add '-12.33333333' to each side of the equation. 12.33333333 + -3.333333333x + -12.33333333 + x2 = 0 + -12.33333333 Reorder the terms: 12.33333333 + -12.33333333 + -3.333333333x + x2 = 0 + -12.33333333 Combine like terms: 12.33333333 + -12.33333333 = 0.00000000 0.00000000 + -3.333333333x + x2 = 0 + -12.33333333 -3.333333333x + x2 = 0 + -12.33333333 Combine like terms: 0 + -12.33333333 = -12.33333333 -3.333333333x + x2 = -12.33333333 The x term is -3.333333333x. Take half its coefficient (-1.666666667). Square it (2.777777779) and add it to both sides. Add '2.777777779' to each side of the equation. -3.333333333x + 2.777777779 + x2 = -12.33333333 + 2.777777779 Reorder the terms: 2.777777779 + -3.333333333x + x2 = -12.33333333 + 2.777777779 Combine like terms: -12.33333333 + 2.777777779 = -9.555555551 2.777777779 + -3.333333333x + x2 = -9.555555551 Factor a perfect square on the left side: (x + -1.666666667)(x + -1.666666667) = -9.555555551 Can't calculate square root of the right side. The solution to this equation could not be determined.
| 5+-2(5+4t)=3+t-8 | | 2x-3=7x+42 | | Y^8+x^2-4xy^2+2x=0 | | y-4+ 25= 31 | | -n-9=5-3n | | (55+30)*x=400+30x | | 0.5x+3.5=6x-24 | | -22=-2x+8(x-5) | | M^2-14m=-24 | | -8=2(x+4) | | 3x-5x+10=-2+4x | | 2000-150=225+3.50 | | 6+7(4-11)=161 | | 185=70+(20+9)w | | -9+11-x-2x-33=122 | | 49=3(h+8)+16 | | (X-40)(x+100)=0 | | 4(u+1)=24 | | 8x+6x-22=88-8x | | 3y+(2x+13)=180 | | 38=2(q+14) | | 6+2(2-10)=60 | | 5a-5=2a+22 | | 2v-4=2(6-7v) | | 5+3f=29 | | 60+.30x=30+.60x | | 7[4w-2(3w+8)]-w=4(3w-2)+6 | | 2w-6-5w=3w+10 | | 3(x-5)+12=0 | | 4c+10=5c+4 | | p(60)=-15(60)+150 | | v+1.78=3.32 |